Logo

Mistral

Installation

npm i llamaindex @llamaindex/mistral
pnpm add llamaindex @llamaindex/mistral
yarn add llamaindex @llamaindex/mistral
bun add llamaindex @llamaindex/mistral

Usage

import { MistralAI } from "@llamaindex/mistral";
import { Settings } from "llamaindex";

Settings.llm = new MistralAI({
  model: "mistral-tiny",
  apiKey: "<YOUR_API_KEY>",
});

Load and index documents

For this example, we will use a single document. In a real-world scenario, you would have multiple documents to index.

import { Document, VectorStoreIndex } from "llamaindex";

const document = new Document({ text: essay, id_: "essay" });

const index = await VectorStoreIndex.fromDocuments([document]);

Query

const queryEngine = index.asQueryEngine();

const query = "What is the meaning of life?";

const results = await queryEngine.query({
  query,
});

Full Example

import { MistralAI } from "@llamaindex/mistral";
import { Document, VectorStoreIndex, Settings } from "llamaindex";

// Use the MistralAI LLM
Settings.llm = new MistralAI({ model: "mistral-tiny" });

async function main() {
  const document = new Document({ text: essay, id_: "essay" });

  // Load and index documents
  const index = await VectorStoreIndex.fromDocuments([document]);

  // get retriever
  const retriever = index.asRetriever();

  // Create a query engine
  const queryEngine = index.asQueryEngine({
    retriever,
  });

  const query = "What is the meaning of life?";

  // Query
  const response = await queryEngine.query({
    query,
  });

  // Log the response
  console.log(response.response);
}

API Reference

Edit on GitHub

Last updated on