Logo
Modules/Large Language Models (LLMs)/Available_llms

Ollama

Installation

npm install llamaindex @llamaindex/ollama

Usage

import { Ollama } from "@llamaindex/ollama";
import { Settings } from "llamaindex";
 
Settings.llm = ollamaLLM;
Settings.embedModel = ollamaLLM;

Load and index documents

For this example, we will use a single document. In a real-world scenario, you would have multiple documents to index.

import { Document, VectorStoreIndex } from "llamaindex";
 
const document = new Document({ text: essay, id_: "essay" });
 
const index = await VectorStoreIndex.fromDocuments([document]);

Query

const queryEngine = index.asQueryEngine();
 
const query = "What is the meaning of life?";
 
const results = await queryEngine.query({
  query,
});

Full Example

import { Ollama } from "@llamaindex/ollama";
import { Document, VectorStoreIndex, Settings } from "llamaindex";
 
import fs from "fs/promises";
 
const ollama = new Ollama({ model: "llama2", temperature: 0.75 });
 
// Use Ollama LLM and Embed Model
Settings.llm = ollama;
Settings.embedModel = ollama;
 
async function main() {
  const essay = await fs.readFile("./paul_graham_essay.txt", "utf-8");
 
  const document = new Document({ text: essay, id_: "essay" });
 
  // Load and index documents
  const index = await VectorStoreIndex.fromDocuments([document]);
 
  // get retriever
  const retriever = index.asRetriever();
 
  // Create a query engine
  const queryEngine = index.asQueryEngine({
    retriever,
  });
 
  const query = "What is the meaning of life?";
 
  // Query
  const response = await queryEngine.query({
    query,
  });
 
  // Log the response
  console.log(response.response);
}

API Reference

Edit on GitHub

Last updated on

On this page