AzureAISearchOptions
Defined in: providers/storage/azure/src/vectorStore/AzureAISearchVectorStore.ts:101
Embeddings and documents are stored in an Azure AI Search index, a merge or upload approach is used when adding embeddings. When adding multiple embeddings the index is updated by this vector store in batches of 10 documents, very large nodes may result in failure due to the batch byte size being exceeded.
Type Parameters
• T extends R
Properties
userAgent?
optional
userAgent:string
Defined in: providers/storage/azure/src/vectorStore/AzureAISearchVectorStore.ts:102
credential?
optional
credential:DefaultAzureCredential
|AzureKeyCredential
|ManagedIdentityCredential
Defined in: providers/storage/azure/src/vectorStore/AzureAISearchVectorStore.ts:103
endpoint?
optional
endpoint:string
Defined in: providers/storage/azure/src/vectorStore/AzureAISearchVectorStore.ts:107
key?
optional
key:string
Defined in: providers/storage/azure/src/vectorStore/AzureAISearchVectorStore.ts:108
serviceApiVersion?
optional
serviceApiVersion:string
Defined in: providers/storage/azure/src/vectorStore/AzureAISearchVectorStore.ts:109
indexName?
optional
indexName:string
Defined in: providers/storage/azure/src/vectorStore/AzureAISearchVectorStore.ts:110
indexClient?
optional
indexClient:SearchIndexClient
Defined in: providers/storage/azure/src/vectorStore/AzureAISearchVectorStore.ts:111
indexManagement?
optional
indexManagement:IndexManagement
Defined in: providers/storage/azure/src/vectorStore/AzureAISearchVectorStore.ts:112
searchClient?
optional
searchClient:SearchClient
<T
>
Defined in: providers/storage/azure/src/vectorStore/AzureAISearchVectorStore.ts:113
languageAnalyzer?
optional
languageAnalyzer:string
Defined in: providers/storage/azure/src/vectorStore/AzureAISearchVectorStore.ts:114
compressionType?
optional
compressionType:KnownVectorSearchCompressionKind
Defined in: providers/storage/azure/src/vectorStore/AzureAISearchVectorStore.ts:115
embeddingDimensionality?
optional
embeddingDimensionality:number
Defined in: providers/storage/azure/src/vectorStore/AzureAISearchVectorStore.ts:116
vectorAlgorithmType?
optional
vectorAlgorithmType:KnownVectorSearchAlgorithmKind
Defined in: providers/storage/azure/src/vectorStore/AzureAISearchVectorStore.ts:117
idFieldKey?
optional
idFieldKey:string
Defined in: providers/storage/azure/src/vectorStore/AzureAISearchVectorStore.ts:121
Index field storing the id
chunkFieldKey?
optional
chunkFieldKey:string
Defined in: providers/storage/azure/src/vectorStore/AzureAISearchVectorStore.ts:125
Index field storing the node text
embeddingFieldKey?
optional
embeddingFieldKey:string
Defined in: providers/storage/azure/src/vectorStore/AzureAISearchVectorStore.ts:129
Index field storing the embedding vector
metadataStringFieldKey?
optional
metadataStringFieldKey:string
Defined in: providers/storage/azure/src/vectorStore/AzureAISearchVectorStore.ts:136
Index field storing node metadata as a json string. Schema is arbitrary, to filter on metadata values they must be stored as separate fields in the index, use filterable_metadata_field_keys to specify the metadata values that should be stored in these filterable fields
docIdFieldKey?
optional
docIdFieldKey:string
Defined in: providers/storage/azure/src/vectorStore/AzureAISearchVectorStore.ts:140
Index field storing doc_id
hiddenFieldKeys?
optional
hiddenFieldKeys:string
[]
Defined in: providers/storage/azure/src/vectorStore/AzureAISearchVectorStore.ts:146
List of index fields that should be hidden from the client. This is useful for fields that are not needed for retrieving, but are used for similarity search, like the embedding field.
filterableMetadataFieldKeys?
optional
filterableMetadataFieldKeys:FilterableMetadataFieldKeysType
Defined in: providers/storage/azure/src/vectorStore/AzureAISearchVectorStore.ts:147
indexMapping()?
optional
indexMapping: (enrichedDoc
,metadata
) =>T
Defined in: providers/storage/azure/src/vectorStore/AzureAISearchVectorStore.ts:163
(Optional) function used to map document fields to the AI search index fields
If none is specified a default mapping is provided which uses
the field keys. The keys in the enriched document are:
["id", "chunk", "embedding", "metadata"]
.
The default mapping is:
"id"
to idFieldKey"chunk"
to chunkFieldKey"embedding"
to embeddingFieldKey"metadata"
to metadataFieldKey
Parameters
enrichedDoc
BaseNode
<Metadata
>
The enriched document
metadata
Record
<string
, unknown
>
The metadata of the document
Returns
T
The mapped index document